The Natural Rearrangement Invariant Structure on Tensor Products

نویسنده

  • C. FERNÁNDEZ-GONZÁLEZ
چکیده

We prove that the only rearrangement invariant (r.i.) spaces for which there exists a crossnorm verifying that the tensor product of these spaces preserves the “natural” r.i. space structure, in the sense that it makes the multiplication operator B a topological isomorphism, are the Lp spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distance-based topological indices of tensor product of graphs

Let G and H be connected graphs. The tensor product G + H is a graph with vertex set V(G+H) = V (G) X V(H) and edge set E(G + H) ={(a , b)(x , y)| ax ∈ E(G) & by ∈ E(H)}. The graph H is called the strongly triangular if for every vertex u and v there exists a vertex w adjacent to both of them. In this article the tensor product of G + H under some distancebased topological indices are investiga...

متن کامل

(c,1,...,1) Polynilpotent Multiplier of some Nilpotent Products of Groups

In this paper we determine the structure of (c,1,...,1) polynilpotent multiplier of certain class of groups. The method is based on the characterizing an explicit structure for the Baer invariant of a free nilpotent group with respect to the variety of polynilpotent groups of class row (c,1,...,1).

متن کامل

Einstein structures on four-dimensional nutral Lie groups

When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...

متن کامل

Extensions of the Tensor Algebra and Their Applications

This article presents a natural extension of the tensor algebra. This extended algebra is based on a vector space as the ordinary tensor algebra is. In addition to “left multiplications” by vectors, we can consider “derivations” by covectors as fundamental operators on this algebra. These two types of operators satisfy an analogue of the canonical commutation relations, and we can regard the al...

متن کامل

New Improvement in Interpretation of Gravity Gradient Tensor Data Using Eigenvalues and Invariants: An Application to Blatchford Lake, Northern Canada

Recently, interpretation of causative sources using components of the gravity gradient tensor (GGT) has had a rapid progress. Assuming N as the structural index, components of the gravity vector and gravity gradient tensor have a homogeneity degree of -N and - (N+1), respectively. In this paper, it is shown that the eigenvalues, the first and the second rotational invariants of the GGT (I1 and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011